L 1 and L ∞ intermediate asymptotics for scalar conservation laws
نویسندگان
چکیده
In this paper, using entropy techniques, we study the rate of convergence of nonnegative solutions of a simple scalar conservation law to their asymptotic states in a weighted L norm. After an appropriate rescaling and for a well chosen weight, we obtain an exponential rate of convergence to a stationary solution. Written in the original coordinates,this provides intermediate asymptotics estimates in L, with an algebraic rate. We also prove a uniform convergence result on the support of the solutions, provided the initial data is compactly supported and has an appropriate behaviour on a neighborhood of the lower end of its support.
منابع مشابه
Contractivity of Wasserstein Metrics and Asymptotic Profiles for Scalar Conservation Laws
The aim of this paper is to analyze contractivity properties of Wasserstein-type metrics for one-dimensional scalar conservation laws with nonnegative, L∞ and compactly supported initial data and its implications on the long time asymptotics. The flux is assumed to be convex and without any growth condition at the zero state. We propose a time–parameterized family of functions as intermediate a...
متن کاملPotential comparison and asymptotics in scalar conservation laws without convexity
Two kinds of optimal convergence orders in L1-norm to a self-similar solution are proved or conjectured for various evolutionary problems so far. The first convergence order is of the magnitude of the similarity solution itself and the second one is of order 1/t . Employing a potential comparison technique to scalar conservation laws we may easily see that these asymptotic convergence orders ar...
متن کاملA total variation diminishing high resolution scheme for nonlinear conservation laws
In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...
متن کاملValidity of Nonlinear Geometric Optics for Entropy Solutions of Multidimensional Scalar Conservation Laws
Nonlinear geometric optics with various frequencies for entropy solutions only in L∞ of multidimensional scalar conservation laws is analyzed. A new approach to validate nonlinear geometric optics is developed via entropy dissipation through scaling, compactness, homogenization, and L–stability. New multidimensional features are recognized, especially including nonlinear propagations of oscilla...
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003